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Graphical Abstract

Abstract

Design of fractal microstructures holds promise for developing advanced materials with improved mechanical properties
and multiple functions. In this paper, a concurrent topology optimization method is proposed to design both two- and three-
dimensional, fractal or hierarchical microstructures. The Boolean subtraction operator (BSO) is introduced to guarantee the
self-similarity among a hierarchical structure at different levels. This method allows us to generate a diversity of fractal
structures which have, for instance, the geometric feature of either clockwise or counterclockwise chirality. By evoking the
fractal Menger sponge as the non-designed domain, we have obtained fractal structures in which all internal transversal sections
have hybrid fractal morphologies. Though our attention is here focused only on the mechanical properties of materials, the
proposed method can also be applied to design fractal structures with optimal optical, acoustic, and electromagnetic properties.
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1. Introduction

The concept of fractal, initiated by Mandelbrot, describes the scale-invariant feature of self-similar geometric
patterns. Fractal patterns are ubiquitous in nature, such as blood vessels and coastlines [1]. For a coastline, for
example, its reduced-scale structure usually exhibits a certain similarity to the whole geometry, and the measured
length of the coastline becomes larger when a finer scale is used. When the number of fractal order increases one
time, the length of the curve increases about 4/3 times for a curve with the fractal dimension of 4/3 [1]. In nature,
fractal structures can provide a larger space, which is beneficial for the habitation of microbes [2].

Self-similar structural hierarchy is a prominent feature of most live biological systems, e.g., neurosciences [3],
cancer cell nuclei [4], brain glial cells [5], myelin membrane monolayers [6], and coronary arteries and veins [7].
Hierarchical structures play a significant role in the regulation of their mechanical properties and biological
functions. For example, hierarchical surface structures endow many biological materials with superhydrophobicity-
based functions, e.g., self-cleaning and antifogging [8]. Interestingly, Rosetti et al. [6] found that the fractal surface
patterns of myelin membrane monolayers are dependent on the internal pressure. In plants, leaf veins, snowflakes
and Roman cauliflower have different fractal or hierarchical morphologies. For example, Roman cauliflowers have
several orders of self-similar helical structures, each consisting of a number of chiral unit blocks with smaller
characteristic sizes (Fig. 1).

Materials with self-similar hierarchical structures have also found many technologically significant applications in
engineering, e.g., absorbing structures [9–11], acoustic and electromagnetic metamaterials [12–16], and composite
structures [17–20]. For example, Zhang et al. [21] and Fan et al. [22] used fractal networks to design stretchable
flexible electronics, which can meet the demand to the large coverage area of functional electronics. Meza et al. [23]
and Zheng et al. [24] used the microstereolithography technique to fabricate three-dimensional (3D) hierarchical
lattice structures, in which stretch- and bend-dominated self-similar structures are assembled. Recently, 3D fractal
multi-vascular networks and functional intravascular topologies made of biocompatible hydrogels are designed and
printed by using the stereolithography method [25]. In the 3D printing technique of vascular networks, fractal
mathematics can guarantee that the second-order vascular architecture does not intersect the first-order structure.
In addition, materials with fractal geometry have also attracted much attention in the field of medical engineering,
thanks to their analogy to such biological tissues as bones and muscles [26].

In recent years, much effort has been directed toward designing self-similar hierarchical structures on the basis
of classical mathematical fractal graphics, such as Koch curve [11] and snowflake. It has been demonstrated that
these fractal structures can be used to achieve some improved mechanical, acoustic, and electromagnetic properties.
However, there is still a lack of an efficient method to design hierarchical structures with desired properties and
functions.

The topology optimization method [27–30] has widely been invoked to design the microstructures of materi-
als [31]. In particular, concurrent topology optimization schemes have been developed for designing both the first-
and second-level structures consisting of different unit blocks [32–34]. The effective elastic property of materials in
the optimized first-level microstructure can be estimated by the micromechanical homogenization theory [35–37].

To guarantee the geometric self-similarity between the first- and second-level structures, in the present paper, we
introduce the Boolean subtraction operator (BSO) in the concurrent topology optimization framework. BSO serves
as an effective constraint for correlating the optimized first- and second-level structures. In comparison with fractal
structures previously designed in the literature, the method proposed in this paper is operated through optimization
iterations starting from one random initial topology, which can not only enhance the design space but also achieve
some exotic 2D or 3D unpredictable designs with prescribed functions.

This paper is organized as follows: The Boolean subtraction operator is introduced in Section 2. In Section 3, the
two-level topology optimization framework of the problem is established on the basis of the BSO, and the adjoint
sensitivity analysis is implemented. In Section 4, we validate the efficacy of the Boolean constraint method, and
some 2D and 3D fractal structures subjected to multiple loads are provided to demonstrate the proposed scheme. In
particular, we introduce the fractal Menger Sponge as one non-designed domain into the concurrent optimization
design. The main conclusions drawn from this study are summarized in Section 5.

2. Boolean subtraction operator

Fractal or hierarchical structures are ubiquitous in biological materials. For instance, Fig. 1 shows the fractal

architecture of a Roman cauliflower, in which the structure at one length scale shown in Fig. 1(a) is composed of
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Fig. 1. Self-similar fractal geometry of Roman cauliflower: (a) the third-order structure, (b) the second-order structure, and (c) the first-order
structure.

Fig. 2. Schematic diagram of a fractal structures: (a) macrostructure, (b) the side view of the microstructure, and (c) the right view of the
magnified microstructure.

a number of smaller unit cells (Fig. 1b), and the geometric properties at different length scales are quite similar
(Fig. 1c). Inspired by such biological materials, we will develop a concurrent topology optimization scheme to
design self-similar or fractal hierarchical structures, as shown in Fig. 2. In spite of previous attempts to design
hierarchical structures by topology optimization methods, it remains unclear how to ensure the self-similarity of the
hierarchical structures at different length scales.

For this purpose, we first introduce the Boolean subtraction operator (BSO) [38,39]. In Fig. 3, structure-A without
internal topological structure is defined as the reference configuration. Structure-B and structure-C1, C2 and C3 with
different topologies are shown in Fig. 3(b) and (c), respectively. The Boolean subtraction operator ‘B–C’ is defined
in the sense that the object B is subtracted by the part coinciding with the object C. For illustration, Fig. 3(c)
shows three types of object C, referred to as structure-C1, C2 and C3, respectively. Among them, structure-C1
has the opposite topology to structure-B, and thus the operation of ‘B–C1’ leads to the structure-D1 shown in
Fig. 3(d), which is identical to structure-B. The second structure, C2, has different internal void topology from
the structure-B, and the operation of ‘B–C2’ yields a more complex structure-D2. In addition, if structure-C3 is
the same as structure-B, and we can also obtain the null set as structure-D3. Using the BSO defined above, it is
expected that the final optimized structures at different levels have the same topology, and the result of BSO is null
like the case of ‘B–C3’. This design principle will be formulated in what follows and demonstrated by a number
of examples.

In voxel topology methods, such as the solid interpolation material penalty (SIMP) method [27,28], both the
square macrostructure shown in Fig. 4(a) and its square microstructure (unit cells) shown in Fig. 4(b) are discretized
into N mesh elements. Let Ω0 and Ω∗ denote the design domains of macrostructure and microstructure, respectively.
To describe the material layouts of the two-level structures, we introduce the macroscale design variables x0

i ∈ [0, 1].
i = 1, 2, . . . , N ) and the microscale design variables x∗

i ∈ [0, 1], (i = 1, 2, . . . , N ) in each mesh element,
espectively. For instance, x0

i = x∗

i = 0 represents that these elements are voids (the green regions in Fig. 4) and
0 ∗
xi = xi = 1 indicates that these elements are filled by material (the blue color regions in Fig. 4). Any intermediate
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Fig. 3. Boolean subtraction operator: (a) reference structure A, (b) topology structure B, (c) three topology structures C1, C2 and C3, and
(d) three topology structures D1, D2 and D3 obtained from the Boolean subtraction of structure-B and structures C1, C2 and C3. The
corresponding subtraction operations are denoted as B–C1, B–C2, and B–C3, respectively.

Fig. 4. Schematic illustration of the Boolean subtraction operator: (a) finite element meshes of the macrostructure, and (b) meshes of the
microstructure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

value in the range of (0, 1) indicates a false material element, referred to as the gray element problem. We use the
SIMP method to solve this problem [28].

In terms of the design variables x0
i ∈ [0, 1] and x∗

i ∈ [0, 1], (i = 1, 2, . . . , N ), the BSO of the structures in the
two levels can be defined as

GBSO =
1
N

N∑
i=1

(
x0

i − x∗

i

)2
. (1)

To ensure that points A and B in the macro- and micro-structures have the same phase (either void or solid), we
an use the difference x0

i –x∗

i to determine the result of ‘A–B’ between two element voxels, as shown in Fig. 4. For
xample, x0

i − x∗

i = 0 indicates that the voxel points A and B have the same material, while x0
i − x∗

i ̸= 0 means that
he material layout at A is different from that at B. Thus, Eq. (1) can translate the geometric description of BSO to
he material value of voxel points. Mathematically, a hierarchical structure is regarded to be fractal or self-similar
hen its GBSO value equals zero.
Besides the above-discussed gray element problem in the SIMP topology optimization model, the appearance of

heckerboard patterns is another issue that needs to be solved [28,40]. Here, we use the density filtering method
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o avoid the possibility for the occurrence of checkerboard patterns. In this method, the physical densities of the
acroscale and microscale design variables are written as

ρ0
i =

1∑
e∈Ni

H 0
ie

∑
e∈Ni

H 0
i ex0

e , (i = 1, 2, . . . , N ) , (2)

ρ∗

i =
1∑

e∈Ni
H∗

ie

∑
e∈Ni

H∗

iex∗

e , (i = 1, 2, . . . , N ) , (3)

espectively, where Hie is the weight factor, and Ni is the set of elements whose center-to-center distance ∆ (i, e)
o the element e is smaller than the filter radius rmin [27,28]. Through this filtering process, the physical densities
0
i and ρ∗

i will be limited in the interval [0, 1]. Thus, Eq. (1) can be rewritten as

G̃BSO =
1
N

N∑
i=1

(
ρ0

i, t − ρ∗

i, t

)2
, (i = 1, 2, . . . , N ) . (4)

In what follows, Eq. (4) will be used as an effective constraint in the topology optimization framework.

3. Concurrent topology optimization method

In this section, we will formulate a two-scale concurrent optimization framework for designing self-similar
hierarchical structures. This framework can be easily extended to the design of higher-level structures. To control
the material volume, we introduce the structural coverage constraint and the average porosity constraint, as in our
previous work [33].

3.1. Topology optimization

In this study, we will take the maximum stiffness of the hierarchical structure subjected to uniaxial tension or
compression as the objective function of optimization. Thus, the concurrent topology optimization problem can be
formulated as the following mathematical programming problem:

min
x0,x∗

: J = FTU

subject to : K
(

D̃, x0, x∗

)
U = F,

: GSCC =

N∑
k=1

ρ0
k s0

k − f1
⏐⏐Ω0

⏐⏐ ≤ 0,

: GAPC =

N∑
k=1

ρ0
k s0

k

⎛⎝ 1
N

N∑
j=1

ρ∗

j s∗

j

⎞⎠− (1 − f2)

N∑
k=1

ρ0
k s0

k ≤ 0,

: G̃BSO =

N∑
k=1

(
ρ0

k − ρ∗

k

)2
/N ≤ 0,

: 0 ≤ x0
k , x∗

k ≤ 1, (k = 1, 2, . . . , N ) ,

(5)

where J , K, and F denote the objective function, the global stiffness matrix, and the nodal force, respectively; U is
the global nodal displacement vector in the macrostructure; functions GSCC and GAPC correspond to the structural
coverage constraint and the average porosity constraint, respectively; s0

k (k = 1, 2, . . . , N ) and s∗

k (k = 1, 2, . . . , N )

are the unit normalized element areas of the unit cells in the macrostructure and microstructure, respectively; |Ω0| is
the volume of the macrostructure, and f1 and f2 are the tuning weight factors in GSCC and GAPC, respectively. The
parameter GSCC controls the layouts of microstructures, and GAPC restricts the total material volume. The effective
elastic matrix D̃ of the microstructure can be computed by solving the following microscopic elasticity equation in
the weak form [35,36]:∫ (

ε∗
)T Dε (δ) dΩ∗

=

∫ (
ε0
)T Dε (δ) dΩ∗, (6)
Ω∗ Ω∗
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where ε∗ = Bχ∗ and ε0 denote the characteristic strain tensor and the unit test strain tensor in the unit cell, δ is
|Ω∗|-periodic virtual displacement field in the microstructure, B and χ∗ are the strain–displacement matrix and the
characteristic displacement field, respectively. D is the material elastic matrix at the micro level and can be written
as

D =
[
Emin +

(
ρ∗
)p Es

]
D0, (7)

where Emin and ES are an infinitesimal positive number and the Young’s modulus of the based material, respectively,
D0 is the elastic matrix of the based material, and P is the penalty factor. For 2D problems, we chose three unit
test strain fields ε0 = [1, 0, 0]T, [0, 1, 0]T and [0, 0, 1]T; whereas for 3D problems, we chose six unit strain fields
ε0 = [1, 0, 0, 0, 0, 0]T, [0, 1, 0, 0, 0, 0]T, [0, 0, 1, 0, 0, 0]T, [0, 0, 0, 1, 0, 0]T, [0, 0, 0, 0, 1, 0]T and [0, 0, 0, 0, 0, 1]T

n the microstructure under periodic boundary conditions. Then the effective elastic matrix can be computed
y [35,36,41]

D̃ =
1

|Ω∗|

∫
Ω∗

(
ε∗ − ε0

)T D
(
ε∗ − ε0

)
dΩ∗, (8)

where |Ω∗| is the volume of the microstructure. In the present concurrent method, the elastic matrix of the kth
macro-element can be written as

DM
k = Dmin +

(
ρ0

k

)η D̃, (k = 1, 2, . . . , N ) . (9)

For the simplicity of formulation, we assume that the macrostructure has only one type of unit cells, though the
present framework can be easily extended to structures consisting of different unit cells.

3.2. Sensitivity analysis with respect to macroscale design variables

To solve the optimization problem defined in Eq. (5), we employ the method of moving asymptote (MMA) [42],
which has a gradient operator, to update all macroscale and microscale design variables. In MMA, the gradient
information and the sensitivity information of objective functions and constraints need to be provided in terms
of the design variables in both levels of structures. Because the maximum stiffness problem in Eq. (5) has the
self-adjoint property [27,28], and the sensitivity of the objective function can be easily written in terms of the
macroscale design variables as

∂ J
(
x0, x∗

)
∂x0

i

= −

N∑
k=1

uT
k
∂kk

∂x0
i

uk = −

N∑
k=1

uT
k

(∫
Ω0

k

BT ∂DM
k

∂x0
i

B dΩ0
k

)
uk (10)

= −

N∑
k=1

uT
k

[
η
(
ρ0

k

)(η−1) ∂ρ0
k

∂x0
i

∫
Ω0

k

BTD̃BdΩ0
k

]
uk, (i = 1, 2, . . . , N ) .

Similarly, the derivatives of structural coverage constraint GSCC, the structural porosity constraint GAPC, and the
Boolean subtraction constraint G̃BSO with respect to the macroscale design variables are calculated by

∂GSCC

∂x0
i

=

N∑
k=1

∂ρ0
k

∂x0
i

s0
k , (i = 1, 2, . . . , N ) , (11)

∂GAPC

∂x0
i

=

N∑
k=1

∂ρ0
k

∂x0
i

s0
k

⎡⎣ 1
N

N∑
j

ρ∗

j s∗

j − (1 − f2)

⎤⎦ , (i = 1, 2, . . . , N ) , (12)

∂G̃BSO

∂x0
i

=

N∑
k=1

2
(
ρ0

k − ρ∗

k

)
N

∂ρ0
k

∂x0
i

, (i = 1, 2, . . . , N ) , (13)

where the indexes k obey the Einstein’s summation convention. The derivative of ∂ρ0
k /∂x0

i can be computed easily
from Eq. (2).
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.3. Sensitivity analysis with respect to microscale design variables

Analogously to Section 3.2, the sensitivity of the objective function with respect to the microscale design
ariables is determined by

∂ J
(
x0, x∗

)
∂x∗

i
= −

N∑
k

uT
k

∫
Ω∗

k

BT ∂DM
k

∂x∗

i
B dΩ∗

k uk (14)

= −

N∑
k

uT
k

∫
Ω∗

k

BT

[(
ρ0

k

)η ∂D̃
∂x∗

i

]
B dΩ∗

k uk, (i = 1, 2, . . . , N ) .

ere, the derivative of D̃ can be obtained as

∂D̃
∂x∗

i
=

N∑
k=1

p
(
ρ∗

k

)(p−1) Es

|Ω∗|

∂ρ∗

k

∂x∗

i

∫
Ω∗

(
ε∗ − ε0

)T D0
(
ε∗ − ε0

)
dΩ∗, (i = 1, 2, . . . , N ) , (15)

here the derivative ∂ρ∗

k /∂x∗

i can be computed easily from Eq. (3).
The derivatives of the structural coverage constraint GSCC, the structural porosity constraint GAPC, and the

oolean subtraction constraint G̃BSO with respect to the microscale design variables are written as
∂GSCC

∂x0
i

= 0, (i = 1, 2, . . . , N ) , (16)

∂GAPC

∂x∗

i
=

N∑
k=1

ρ0
k s0

k

⎛⎝ 1
N

N∑
j=1

∂ρ∗

j

∂x∗

i
s∗

j

⎞⎠− (1 − f2)

N∑
i=1

ρ0
k s0

k , (i = 1, 2, . . . , N ) , (17)

∂G̃BSO

∂x0
i

= −

N∑
k=1

2
(
ρ0

k − ρ∗

k

)
N

∂ρ∗

k

∂x0
i

, (i = 1, 2, . . . , N ) . (18)

All sensitivity information can be solved from Eqs. (9)–(18). Then the optimization iteration process will be
terminated when the maximum error of all design variables between the two adjacent iteration steps become less
than 0.0001 or the maximum iteration number reaches up to 200.

4. Examples and discussions

The above topology optimization method based on the Boolean subtraction operator allows us to design materials
with both 2D and 3D hierarchical structures. In this section, we provide a few examples of 2D square structures
and 3D cubic structures to illustrate the application of this method. In all 2D examples, both the macrostructure
and microstructure have nx × ny four-node bilinear square elements, as shown in Fig. 3(a), while all 3D structures
have nx × ny × nz eight-node bilinear cubic elements, as shown in Fig. 3(b). We set nx × ny = 60 for the 2D

roblems, and nx × ny × nz = 40 for the 3D problems. The elements are numbered following the order from the
pper to the bottom, from the left to the right, and from the back to the front, as shown the 2D in Fig. 5(a) and
D in Fig. 5(b). The boundary conditions and nodal loads we have specified in the calculations are also given in
ig. 5. The dimensionless Young’s modulus and Poisson’s ratio of the based material in the microstructure are set

o be 10 and 0.3, respectively. All examples are performed through a MATLAB program.

.1. Verification of the Boolean subtraction operator

The concurrent topology optimization formulated in Section 2 is first used to design hinged-end planar structures.
wo examples are given below, with the boundary conditions and nodal loads being listed in Table A.1 (Appendix).
he first structure is designed under the Boolean subtraction constraint (Fig. 6a), while the other is not (Fig. 6b).
he tunable parameters in Eq. (5) are set as f1 = 0.5 and f2 = 0.5. The optimized results are shown in Fig. 6(a)

nd (b) with the objective function values J = 18.4 and J = 22.0, respectively. Without implementing the Boolean
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Fig. 5. The element numbers (black color) and node numbers (red color) in (a) the 2D and (b) 3D structures. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Verification of the Boolean subtraction constraint: (a) the optimized fractal structure using the Boolean subtraction constraint, (b) the
optimized structure without the Boolean subtraction constraint, (c) the iteration history of the Boolean subtraction constraint.

subtraction constraint into the optimization scheme, the topology in the microstructure in Fig. 6(a) is not like that
in the macrostructure, while the result shown in Fig. 6(b) has the same morphological shape at both microscale and
macroscale levels. This is because that under the Boolean constraint, the difference of the material layouts in the
macrostructure and microstructure can gradually reduce to zero. When G̃BSO gets to be zero, the macrostructure
and microstructure will have the same topology. However, the results in Fig. 6(a) without introducing the Boolean
subtraction constraint have a large value of G̃BSO even after many optimization iterations [Fig. 6(c)]. Besides, from
the iteration history curve in Fig. 6(c), the present optimization method converges quickly within 50 steps and the
whole optimization process is very stable. Therefore, the proposed method shows a high efficiency and robustness
in the design of fractal structures.

4.2. Multi-load design of fractal structures

For the structure in Fig. 6(a), despite the self-similarity of micro- and macro-structures, it is still difficult to
obtain a symmetric or chiral hierarchical structure because of the single boundary and loading conditions assumed
in Section 4.1. To design structures with symmetric or chiral features, we further improve the above scheme. To
this end, we apply four different loads and boundary conditions on the macrostructure and rewrite the assembling
objective function as

J
(
x0, x∗

)
=

L∑
l=1

FT
l Ul , (19)

where L is the total number of loading situations we consider in the optimization. It is noted that, for the multi-load

case, the number of the design variables remains unchanged. In the 2D example, L is set to be 4 and the details
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Fig. 7. Optimized fractal hierarchical structure under multi-load condition.

Fig. 8. Iteration history curves of (a) the objective function and material volume fraction, and (b) Boolean subtraction constraint factor.

of the four loads and boundary conditions we assume in the calculation are listed in Table A.1 (Appendix). In this
example, we first consider four symmetric loads and boundary conditions. The obtained fractal structure with the
objective function value J = 78.5 is given in Fig. 7, in which the microstructure has the identical morphology as the
macrostructure, and both the macro- and micro-structures have the mirror symmetry property along all directions of
the x, y, and diagonal axes. The iteration history curves of the objective function, the material volume fraction, and
the Boolean subtraction constraint factor are given in Fig. 8. This example demonstrates that this enhanced method
can be used to design structures with specific symmetry or chirality through the consideration of multi-load cases,
rather than a single load mode.

To design hierarchical structures with chiral morphology, we specify two different twisting loads and four
boundary conditions, as shown in Fig. 6. The details of loading and boundary conditions are listed in Table A.1
(Appendix). Thus, we obtain two chiral fractal structures with the objective function values J = 47.14 and
J = 118.7, as shown in Fig. 9. Here the chirality of a structure is defined by the rotating orientation from a
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Fig. 9. Fractal structures with (a) weak counterclockwise and (b) clockwise chirality.

symmetric axis of the square region to the corresponding axis of its structure. The optimized structure in Fig. 9(a)
has the feature of weak chiral, counterclockwise morphology while that in Fig. 9(b) is clockwise. The macro- and
micro-structures have the same chiral topology except their difference in the characteristic sizes. By adjusting the
twisting loads, we can obtain fractal structures with weak (Fig. 9a) and strong (Fig. 9b) chirality. If the applied
twisting loads are reversed in direction, the chirality of the optimized structures can also be reversed. Therefore,
the present concurrent topology scheme enables to design hierarchical structures with different chirality through the
application of external torques in the simulations.

4.3. Three-dimension fractal structures

In contrast to the 2D structures illustrated in Section 4.2, 3D structures have three directions of voxel layouts.
To ensure the stability of the optimization process, we introduce the 3D Boolean subtraction constraint, which is
expressed as

G̃BSO ≡
1
N

N∑
k=1

[(
1 − ρ0

k

)2
−
(
1 − ρ∗

k

)2
]2

≤ 0. (20)

A few representative examples will be given below to demonstrate the application of the presented method for
designing 3D hierarchical structures.

In the first example, we set the parameters f1 = 0.2 and f2 = 0.8. The six symmetric loading and boundary
conditions we specify are given in Table A.2 (Appendix). To more clearly show the optimized 3D structure, we plot
the isosurface with the optimized design variables larger than 0.5. The optimized macrostructure in Fig. 10(a) with
the objective function value J = 7.84 has the same topology as the microstructure shown in Fig. 10(b). Though
his structure resembles the classical face centered cubic (FCC) lattice structure consisting of straight bars obtained
n the previous studies [23,24], the internal struts shown in Fig. 10(b) are slightly curved. This example proves
hat the topology optimization method proposed in this work can efficiently yield various 3D fractal structures by
ontrolling the loading and boundary conditions.

In the second example, we set the parameters f1 = 0.3 and f2 = 0.7. Four symmetric loading and boundary
onditions are applied on the nodal points at the right, left, front, and back surfaces (Table A.2 in the Appendix). The
ptimized fractal macro- and micro-structures with the objective function value J = 4.01 are shown in Fig. 11(a)
nd (b), respectively. The two levels of structures have the same morphology consisting of shell or bent plate
lements. It is well known that, when subjected to some special loads, the structures consisting of shell and plate
lements have better mechanical properties than lattice structures consisting of bars [43–46].

The material volume fraction is a key parameter that significantly influences the mechanical properties of the
esigned structure. To examine this aspect, we change the values of f1 and f2, as listed in Table 1. We find that some

oids will emerge in the bent shell structures as the value of f1 approaches 0.2. This is because that the finite element



H.-K. Zhang, W.-J. Wu, Z. Kang et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113399 11

n
s
f
i
a
e

Fig. 10. (a) Macrostructure and (b) microstructure in the designed 3D fractal structure.

Fig. 11. (a) Macrostructure and (b) microstructure in the optimized 3D fractal structures consisting of shell and bent plate elements.

umbers in the macro- and micro-structures are finite (40 × 40 × 40), and the formation voids in the perfect shell
tructures can further lower the material volume fraction [47]. When f1 decreases to a small number (e.g., 0.1), the
ractal structure will transform from a shell topology to a lattice, as shown in Table 1. Corresponding to the decrease
n the material volume fraction, the effective stiffness of the obtained fractal structure decreases remarkably. Such

transformation from shell structures to lattice structures is close to the structural evolution of bone with aging,

specially under the pathological conditions of osteoporosis. The application of the present topology optimization
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Table 1
Effects of parameters f1 and f2.

Fig. 12. Optimized 3D hybrid fractal structure with the feature of Menger sponge: (a) Menger sponge structure, (b) the optimized fractal
tructure, and (c) the microstructure and its half showing the internal morphology.

ethod to such biological materials as bone holds promise for important application in medical engineering and
ill be further studied in our next work.

.4. Menger sponge

The Menger sponge is a classical fractal graph, but it remains unclear how to design such super-structures from
he viewpoint of mechanical principle. To further illustrate the diverse application of the present topology method,
e will design this kind of structures following a straightforward routine. Unlike the above examples, we here

ntroduce a fractal Menger sponge as the designed domain (the solid material regions), as shown in Fig. 12(a). For

xample, we set the parameters f1 = 0.3 and f2 = 0.7. Six symmetric loading and boundary conditions are applied
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Fig. 13. Three representative cross-sections of the optimized 3D fractal structure shown in Fig. 12(b).

Table A.1
The fixed nodal freedoms and nodal loads in different 2D examples.

Cases Fixed nodal freedoms Loads

Fig. 6
[2 (ny + 1) _12] ,

[2 (ny + 1) (nx + 1) _1] .
[1_12], [(ny + 1) nx + 1_12].

Fig. 7 [2 (ny + 1) _12] ,

[(ny + 1) (nx + 1) _1] ;

[1_12] , [(ny + 1) _1] ;

[1_2] , [(ny + 1) nx + 1_12] ;

[(ny + 1) nx_1] ,

[(ny + 1) (nx + 1) _12] .

[(ny + 1) nx/2 + 1_2] ;

[(ny + 1) nx + ny/2 + 1_1] ;

[(ny + 1) (nx/2 + 1) _2
¯
] ; [ny/2 + 1_1

¯
] .

Fig. 9(a)
[10 (ny + 1) + 1_1

¯
] ;

[(ny + 1) nx + 11_2] ;

[(ny + 1) (nx − 9) _1]; [ny − 9_2] .

Fig. 9(b)

[(ny + 1) nx/2 + 1_1] ,

[(ny + 1) nx + 1_2
¯
] ;

[(ny + 1) nx + ny/2 + 1_2
¯
] ,

[(ny + 1) (nx + 1) _1
¯
] ;

[(ny + 1) (nx/2 + 1) _1
¯
] , [(ny + 1) _2] ;

[ny/2 + 1_2] , [1_1] .

on the specified nodes at the six surfaces in the optimization domain (see Table A.2 in the Appendix for details).
Through the topology optimization scheme, the obtained macrostructure with the objective function value J = 7.84
nd the corresponding microstructure are given in Fig. 12(b) and (c), respectively. It is clear that all surfaces of the
ptimized fractal structure exhibit the geometric characteristics of Menger sponge at both levels.

To more clearly illustrate the complex internal topologies in Fig. 12, three representative cross-sections of the
ptimized self-similar structure in Fig. 12(b) are given in Fig. 13(a–c), which all have fractal patterns at the macro
nd micro levels. It is emphasized that, besides the Menger sponge, some other fractal graphs can also be employed
nalogously to construct novel hierarchical structures.
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Table A.2
The fixed nodal freedoms and nodal loads in the 3D examples.

Cases Fixed nodal freedoms Loads

Fig. 10

[1_123] , [(ny + 1) _123] ,

[(ny + 1) (nx + 1) nz + ny + 1_123] ,

[(ny + 1) (nx + 1) nz + 1_123] ;

[1_123] , [(ny + 1) _123] ,

[(ny + 1) nx + 1_123] ,

[(ny + 1) (nx + 1) _123] ;

[(ny + 1) nx + 1_123] ,

[(ny + 1) (nx + 1) _123] ,

[(ny + 1) (nx + 1) nz + (ny + 1) nx + 1_123] ,

(ny + 1) (nx + 1) nz + (ny + 1) (nx + 1) ;

(ny + 1) (nx + 1) nz + 1_123,

[(ny + 1) (nx + 1) nz + (ny + 1) _123] ,

[(ny + 1) (nx + 1) nz + (ny + 1) nx + 1_123] ,

[(ny + 1) (nx + 1) nz + (ny + 1) (nx + 1) _123] ;

[1_123] , [(ny + 1) nx + 1_123] ,

[(ny + 1) (nx + 1) nz + 1_123] ,

[(ny + 1) (nx + 1) nz + (ny + 1) nx + 1_123] ;

[(ny + 1) _123] , [(ny + 1) (nx + 1) _123] ,

[(ny + 1) (nx + 1) nx + (ny + 1) _123] ,

[(ny + 1) (nx + 1) (nz + 1) _123] .

[
(ny + 1) (nx + 1) nz/2+

(ny + 1) nx/2 + ny/2_1

]
;[

(ny + 1) (nx + 1) nz+
(ny + 1) nx/2 + ny/2 + 1_3

]
;

[(ny + 1) (nx + 1) nz/2 + ny/2 + 1_1
¯
] ;[

(ny + 1) nx/2 + ny/2 + 1_3
¯

]
;[

(ny + 1) (nx + 1) nz/2+

(ny + 1) nz/2 + 1_2

]
;[

(ny + 1) (nx + 1) nz/2+

(ny + 1) (nx/2 + 1) _2

]
.

Fig. 11

[1_123] , [(ny + 1) _123] ,

[(ny + 1) (nx + 1) nz + ny + 1_123] ,

[(ny + 1) (nx + 1) nz + 1_123] ;

[1_123] , [(ny + 1) _123] ,

[(ny + 1) nx + 1_123] ,

[(ny + 1) (nx + 1) _123] ;

[(ny + 1) nx + 1_123] ,

[(ny + 1) (nx + 1) _123] ,

[(ny + 1) (nx + 1) nz + (ny + 1) nx + 1_123] ,

[(ny + 1) (nx + 1) nz + (ny + 1) (nx + 1)] ;

[(ny + 1) (nx + 1) nz + 1_123] ,

[(ny + 1) (nx + 1) nz + (ny + 1) _123] ,

[(ny + 1) (nx + 1) nz + (ny + 1) nx + 1_123] ,

[(ny + 1) (nx + 1) nz + (ny + 1) (nx + 1) _123] ;

[
(ny + 1) (nx + 1) nz/2+

(ny + 1) nx/2 + ny/2_1

]
;[

(ny + 1) (nx + 1) nz+
(ny + 1) nx/2 + ny/2 + 1_3

]
;

[(ny + 1) (nx + 1) nz/2 + ny/2 + 1_1
¯
] ;[

(ny + 1) nx/2 + ny/2 + 1_3
¯

]
.

(continued on next page)

5. Conclusions

In summary, we have proposed a concurrent topology optimization method by introducing the Boolean
subtraction operator (BSO) to design both 2D and 3D fractal structures. The BSO functions to guarantee the
geometric similarity between the macro- and micro-structures. By specifying multiple loads, the presented method
allows us to design chiral fractal structures with required symmetric or chiral morphologies. The clockwise and
counterclockwise properties of 2D structures can be realized by the application of twisting loading conditions. A
few 2D and 3D fractal structures have been given as examples to demonstrate the efficiency and robustness of the
proposed scheme. Different types of hierarchical structures consisting of plate and shell elements can be obtained
with superior mechanical properties. In addition, such fractal graphs as the Menger sponge can also be invoked to
construct hierarchical structures with particular topological characteristics.

The examples shown in Section 4 demonstrate that the proposed topology optimization method is simple,
efficient, and robust in the design of materials with fractal structures. Though we address mainly the mechanical
properties of materials in this paper, the proposed method can also be extended to design 2D and 3D fractal structures
with novel optical, acoustic, and electromagnetic properties. In these cases, the mathematical programming problem
in Section 3.1 should be modified by introducing the corresponding structure–function relationship. Finally, it is
worth mentioning that the assumptions of linear constitutive relation and small deformation have been made in this



H.-K. Zhang, W.-J. Wu, Z. Kang et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113399 15

t
z
t

Table A.2 (continued).

Cases Fixed nodal freedoms Loads

Fig. 12

[1_123] , [(ny + 1) _123] ,

[(ny + 1) (nx + 1) nz + ny + 1_123] ,

[(ny + 1) (nx + 1) nz + 1_123] ;

[1_123] , [(ny + 1) _123] ,

[(ny + 1) nx + 1_123] ,

[(ny + 1) (nx + 1) _123] ;

[(ny + 1) nx + 1_123] ,

[(ny + 1) (nx + 1) _123] ,

[(ny + 1) (nx + 1) nz + (ny + 1) nx + 1_123] ,

[(ny + 1) (nx + 1) nz + (ny + 1) (nx + 1)] ;

[(ny + 1) (nx + 1) nz + 1_123] ,

[(ny + 1) (nx + 1) nz + (ny + 1) _123] ,

[(ny + 1) (nx + 1) nz + (ny + 1) nx + 1_123] ,

[(ny + 1) (nx + 1) nz + (ny + 1) (nx + 1) _123] ;

[1_123] , [(ny + 1) nx + 1_123] ,

[(ny + 1) (nx + 1) nz + 1_123] ,

[(ny + 1) (nx + 1) nz + (ny + 1) nx + 1_123] ;

[(ny + 1) _123] , [(ny + 1) (nx + 1) _123] ,

[(ny + 1) (nx + 1) nx + (ny + 1) _123] ,

[(ny + 1) (nx + 1) (nz + 1) _123] .

[14 (ny + 1) (nx + 1) + (ny + 1) nx + 15_1] ,

[14 (ny + 1) (nx + 1) + (ny + 1) nx + 27_1] ,

[26 (ny + 1) (nx + 1) + (ny + 1) nx + 15_1] ,

[26 (ny + 1) (nx + 1) + (ny + 1) nx + 27_1] ;

[(ny + 1) (nx + 1) nz + 14 (ny + 1) + 15_3] ,

[(ny + 1) (nx + 1) nz + 26 (ny + 1) + 15_3] ,

[(ny + 1) (nx + 1) nz + 14 (ny + 1) + 27_3] ,

[(ny + 1) (nx + 1) nz + 26 (ny + 1) + 27_3] ;

[14 (ny + 1) (nx + 1) + 15_1
¯
] ,

[14 (ny + 1) (nx + 1) + 27_1
¯
] ,

[26 (ny + 1) (nx + 1) + 15_1
¯
] ,

[26 (ny + 1) (nx + 1) + 27_1
¯
] ;[

14 (ny + 1) + 15_3
¯

]
,[

26 (ny + 1) + 15_3
¯

]
,[

14 (ny + 1) + 27_3
¯

]
,[

26 (ny + 1) + 27_3
¯

]
;

[14 (ny + 1) (nx + 1) + 14 (ny + 1) + 1_2] ,

[26 (ny + 1) (nx + 1) + 14 (ny + 1) + 1_2] ,

14 (ny + 1) (nx + 1) + 26 (ny + 1) + 1_2 [] ,

[26 (ny + 1) (nx + 1) + 26 (ny + 1) + 1_2] ;

[14 (ny + 1) (nx + 1) + 15 (ny + 1) _2
¯
] ,

[26 (ny + 1) (nx + 1) + 15 (ny + 1) _2
¯
] ,

[14 (ny + 1) (nx + 1) + 27 (ny + 1) _2
¯
] ,

[26 (ny + 1) (nx + 1) + 27 (ny + 1) _2
¯
] .

work, this method deserves to be extended to flexible structures and devices comprising superelastic soft materials
subject to large deformations
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Appendix

In this appendix, we introduce the symbols [index 12] and [index 123] to represent the fixed nodal freedoms of
2D and 3D (Fig. 5) structural boundary conditions (the second column in Table A.1). For example, [20 123] means
hat the x, y and z-direction freedoms of the 20th node are fixed, and the [10 1

¯
3] means that the opposite x and

-direction freedoms are applied with unit loads (the third column in Table A.1). The semicolon symbol ‘;’ in the
able distinguishes the different groups of loading and boundary conditions.
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